oxy]-3-[(p-tolylsulfonyl)oxy]propyl]-1H-pyrrolo[2,3-d]carbazole-6-carboxylate (64). A solution of the hydroxy tosylate from the previous reaction and triethylamine (50 μ L, 0.36 mmol) in tetrahydrofuran (20 mL) was stirred under nitrogen and cooled to 0 °C. Trimethylsilyl trifluoromethanesulfonate (70 μ L, 0.36 mmol) was added by syringe and the reaction mixture was stirred for 20 min. Aqueous saturated sodium bicarbonate was added and the THF layer was separated. The aqueous layer was extracted with ether $(3 \times 50 \text{ mL})$ and the combined organic layers were then dried over sodium sulfate and concentrated. Flash chromatography on silica gel, eluting with 1:1 ether-hexane, gave 0.052 g (38%) of the title compound: TLC R_f 0.50 (silica, 3:2 ether-hexane, CAS blue); 270-MHz ¹H NMR (CDCl₃) δ 0.00 (s, 9 H), 0.55 (t, J = 7.4 Hz, 3 H), 0.83–0.94 (m, 1 H), 1.05–1.10 (m, 1 H), 1.20 (br s, 1 H), 1.31–1.53 (m, 2 H), 1.60 (d, J = 6.8 Hz, 3 H), 1.90-2.01 (m, 1 H), 2.26-3.30 (m, 1 H), 2.35 (s, 3 H), 2.48-2.64 (m, 3 H), 2.79–2.84 (m, 1 H), 3.03 (s, 1 H), 3.73 (s, 3 H), 3.78 (d, J = 9.6 Hz, 1 H), 3.90 (d, J = 9.5 Hz, 1 H), 4.61–4.63 (m, 1 H), 6.70-6.79 (m, 3 H), 7.02-7.08 (m, 1 H), 7.27 (d, J = 8.0 Hz, 2 H),7.39–7.47 (m, 3 H), 7.60–7.66 (m, 1 H), 7.73 (d, J = 8.3 Hz, 2 H), 7.78-7.83 (m, 2 H), 8.56 (br s, 1 H), 8.90 (br s, 1 H); mass spectrum, m/z (rel intensity) 752 (M⁺, 2), 611 (2), 538 (9), 437 (25), 384 (9), 302 (4), 283 (14), 279 (13), 268 (3), 229 (12), 205 (5), 180 (4), 167 (15), 155 (100), 149 (30), 91 (19).

(7S, 5R)-Methyl 3-[(S)-1-(1-Naphthyl)ethyl]-1,2,3,4,5,6,7,8-octahydro-5-[(2S)-2-ethyl-2,3-epoxypropyl]-7-(15-vindolinyl)azonino[5,4-b]indole-7-carboxylate (65). A solution of 0.040 g (0.059 mmol) of (3aR,4R)-methyl 3-[(S)-1-(1naphthyl)ethyl]-2,3,3a,4,5,7-hexahydro-4-[(2S)-2-ethyl-2-[(trimethylsilyl)oxy]-3-[(p-tolylsulfonyl)oxy]propyl]-1H-pyrrolo-[2,3-d]carbazole-6-carboxylate (64) and triethylamine (9.0 μ L, 1.1 equiv) in dichloromethane (2 mL) was stirred under nitrogen and brought to 0 °C. tert-Butyl hypochlorite (7.7 µL, 1.1 equiv) in dichloromethane (1 mL) was added by syringe, and the mixture was stirred for 5 min, at which time, TLC showed no remaining starting material. The solution was washed with water (5 mL), dried over magnesium sulfate, and concentrated under reduced pressure to give a white foam, which was used directly in the following reaction: TLC R_f 0.50 (silica gel, 3:2 ether-hexane, CAS purple).

To a solution of the chlorination product and vindoline (3, 27 mg, 1 equiv) in dry acetone (2 mL) was added tetrafluoroboric acid-diethyl ether complex (19 μ L, 2 equiv). The reaction was brought to 0 °C and silver tetrafluoroborate (23 mg, 2 equiv) in acetone (1 mL) was added. The resulting heterogeneous solution was stirred for 10 min, at which time 10% NH₄OH (10 mL) was added. The now homogeneous solution was extracted with dichloromethane (3 × 10 mL). The combined organic extracts were dried with magnesium sulfate and concentrated under reduced pressure to give a white foam, which was used directly in the following reaction.

The above material was dissolved in glacial acetic acid (5 mL) and with stirring potassium borohydride (32 mg, 10 equiv) was slowly added. After 15 min the solution was poured onto ice and made strongly basic with concentrated ammonium hydroxide. Extraction with dichloromethane (3 \times 10 mL), drying (MgSO₄), and concentration gave a white foam, which was used directly in the following reaction: TLC R_f 0.57 (silica gel, ethyl acetate, CAS brown).

To a solution of the above coupled product in tetrahydrofuran (10 mL) at 0 °C was added tetrabutylammonium fluoride (180 μ L, 3 equiv, 1 M in THF). The mixture was brought to room temperature and stirred for 15 min, at which time no starting material remained by TLC. The solution was washed with aqueous saturated sodium bicarbonate, dried (MgSO₄), and concentrated under vacuum. Flash chromatography on silica gel, eluting with ethyl acetate, gave 0.043 g (72%) of the title compound: TLC R_f 0.46 (silica gel, ethyl acetate, CAS brown). ¹H NMR shows mostly broad peaks presumably due to interaction of naphthyl group and remainder of compound. Selected peaks for 270-MHz ¹H NMR (CDCl₃): δ 0.49 (t, J = 7.3 Hz, 3 H, C18'), 1.01 (t, J = 7.2 Hz, 3 H, C18), 2.11 (s, 3 H, OCOCH₃), 3.79 (s, 6 H, $2 \times CO_2 CH_3$; mass spectrum, m/z (rel intensity) 965 (M + 1, 59), 905 (4), 852 (4), 811 (3), 566 (3), 509 (4), 391 (6), 253 (4), 242 (7), 239 (3), 214 (5), 201 (3), 197 (3), 195 (5), 187 (13), 186 (81), 185 (64), 184 (80), 183 (21), 173 (11), 170 (10), 157 (22), 156 (23), 155 (100), 154 (17), 153 (10), 143 (9), 142 (57), 113 (4), 100 (4), 99 (6), 97 (4).

Vinblastine (1). A solution of the epoxide **65** (0.040 g, 0.041 mmol) in methanol (10 mL) was heated at reflux for 40 h, at which time no starting material was present by TLC and a new more polar spot had appeared. The mixture was cooled and 10% palladium on charcoal (5.0 mg) was added. This was then stirred under a hydrogen atmosphere at room temperature for 3 h and filtered, the residue was washed with dichloromethane and methanol, and the filtrates were concentrated under vacuum.

The resulting atropisomer **30** was dissolved in dry toluene (10 mL) and heated at reflux for 8 h, at which time TLC showed no remaining starting material and only the presence of vinblastine in its natural conformation.

Acknowledgment. This work was supported by the Cancer Institute of the National Institutes of Health by grant R01CA12010. Vindoline was generously supplied by Dr. A. J. Hannart of Omnichem. We are indebted to Dr. L. J. Sears of Montana State University for high resolution mass spectra and to Scott Cowen and Rodney Parsons of our group for low resolution mass spectra. Timothy Spitzer provided CD spectra and molecular modeling calculations.

Supplementary Material Available: ¹H NMR and ¹³C NMR spectra for compounds 1, 7a, 7b, 13, 14a, 14b, 18a, 19a, 20a, 20b, 21a, 21b, the monotosylates of 20a and 21a, 22a, 22b, 26a, 27a, 30, 31a, 31b, 33a, 33b, 34, 35a, and 35b (46 pages). Ordering information is given on current masthead page.

Conversion of D-Glucose to L-Glucose: Oxidative Decarboxylation of α-Oxy Carboxylic Acids via Their Diacyl Peroxides

Masao Shiozaki

New Lead Research Laboratories, Sankyo Co., Ltd., Hiromachi 1-2-58, Shinagawa-ku, Tokyo 140, Japan Received May 9, 1990

D-Glucose was converted to an L-glucose derivative. The key step was the oxidative decarboxylation of carboxylic acid 12 via its diacyl peroxide derivative. This synthetic scheme proceeds through C-glycosidic compounds and is applicable to other sugar configurations.

Because L sugars are potentially useful as safe, effective, nonnutritive sweeteners,¹ these less common enantiomers of the carbohydrates have been studied for many years. Chemical syntheses of L-glucose from L-arabinose were reported by Emil Fischer² in 1890 and by J. C. Sowden and

(1) Szarek, W. A.; Hay, G. W.; Vyas, D. M.; Ison, E. R.; Horonowski, L. J. J. Can. J. Chem. 1984, 62, 671.

(2) Fischer, E. Ber. Dtsch. Chem. Ges. 1890, 23, 2611-2624.

^a (a) *n*-Bu₃SnCH₂OCH₂OMe, *n*-BuLi-THF, -78 °C, 71%; (b) MeOH, cat. concentrated HCl, reflux, 82%; (c) THF-6 M HCl (4:7), 60 °C, 87%; (d) PivCl-pyridine, 60 °C, 92%; (e) Et₃SiH, BF₃·OEt₂-MeCN, room temperature, 66%; (f) H₂, Pd-C-AcOH, 100%; (g) TrCl-pyridine, room temperature, 79%; (h) BnBr, NaH, cat. n-Bu,NI-THF, room temperature, 89%; (i) 4% H₂SO₄-MeOH, room temperature, 71%; (j) DMSO, (COCl)₂, Et₃N-CH₂Cl₂, 86%; (k) NaIO₄, cat. RuO₂:xH₂O/MeCN-CCl₄-H₂O (2:2:3), 40%; (l) 3-ClC₆H₄COOOH, DCC-CH₂Cl₂, 0 °C-room temperature, 34%; (m) 0.1 M NaOH-THF, room temperature, 54%.

H. O. L. Fischer.³ Conversion of D-glucose into L-glucose has also been reported.^{1,4} Our need for an improved method for the synthesis of an L-glucose derivative stimulated the synthesis reported herein, which involves the oxidative decarboxylation of an α -oxy carboxylic acid via its diacyl peroxide as a key step (Scheme I).

The starting material, 2,3,4,6-tetra-O-benzyl-Dglucono-1,5-lactone (1), was prepared from D-glucose according to a reported method.⁵ Treatment of 1 with [(methoxymethoxy)methyl]lithium, MeOCH₂OCH₂Li,⁶ generated from [(methoxymethoxy)methyl]tributylstannane,⁶ gave an anomeric mixture of 1-methoxymethylated heptuloses 2,7 which were inseparable chromatographically and partly contained the keto form. Refluxing the mixture 2 in MeOH containing a catalytic amount of concentrated HCl gave only the methyl glyco-

side 3 (mp 128 °C), whereas treatment of 2 or 3 in THF-6 M HCl (1.3:2.3, v/v) at 60 °C for 1.5 h gave free sugar 4 (mp 118-119 °C, as monohydrate) exclusively. Compound 4 was determined to have the α -anomeric configuration (S), because the anomeric hydroxy proton showed a nuclear Overhauser effect for both H-4 and H-6. The primary hydroxy group of 4 was protected with a trimethylacetyl group to give 5. Dehydroxylation of 5 with triethylsilane-boron trifluoride etherate^{7,8} yielded the 2,6anhydroheptitol derivative 6. Treatment of 6 with 2.5 equiv of triphenylcarbenium tetrafluoroborate⁹ in CH₂Cl₂ gave the selectively monodebenzylated derivative 10 only in low yields (0-23%) with many byproducts. Thus the conditions required for this selective deprotection of OH-7 appeared too subtle, and a stepwise conversion to 10 was therefore pursued. Debenzylation of 6 by catalytic hydrogenation with 10% Pd on carbon gave the tetraol 7, which was converted into the 7-trityl ether 8 by treatment with triphenylmethyl chloride in pyridine. Benzylation

⁽³⁾ Sowden, J. C.; Fischer, H. O. L. J. Am. Chem. Soc. 1947, 69, 1963.
(4) Sowa, W. Can. J. Chem. 1969, 47, 3931.
(5) (a) Kuzuhara, H.; Fletcher, H. G., Jr. J. Org. Chem. 1967, 32, 2531.
(b) Perrine, T. D.; Glaudemans, C. P. J.; Ness, R. K.; Kyle, J.; Fletcher, H. G. Jr. J. Org. Chem. 1967, 32, 664.
(6) Still, W. C. J. Am. Chem. Soc. 1978, 100, 1481.
(7) Lewis M. D.; Che. L. K.; Kipi, Y. J. Am. Chem. Soc. 1982, 104.

⁽⁷⁾ Lewis, M. D.; Cha, J. K.; Kishi, Y. J. Am. Chem. Soc. 1982, 104, 4976

⁽⁸⁾ Kraus, G. A.; Frazier, K. A.; Roth, B. D.; Taschner, M. J.; Neuenschwander, K. J. Org. Chem. 1981, 46, 2417. (9) Barton, D. H. R.; Magnus, P. D.; Smith, G.; Streckert, G.; Zurr, D.

J. Chem. Soc., Perkin Trans. 1 1972, 542.

Table I.	Oxidative Deca	rboxylation of	α-Oxy	Carboxylic	Acids with	3-Chloro	perbenzoic	Acid and	I DCC
----------	-----------------------	----------------	-------	------------	------------	----------	------------	----------	-------

substrate 15	solvent	temp, °C/time, min	product 16	yield, %
Ph_COOH AcO	CH_2Cl_2	0/15	Ph_O_CI	51
меосоон в	CH ₂ Cl ₂	0/15	MeO_O	56
о	EtOAc	0/15		15
АсоСООН d	$\rm CH_2 Cl_2$	0/15	dec	0
PhCOOH MeO	EtOAc	rt ^a /45	dec	0
	EtOAc	0/15	ACO ACO ACO ACO ACO ACO	3 9

^aRoom temperature.

of 8 to give 9 followed by acid-catalyzed detritylation furnished the primary alcohol 10. Swern or Moffatt oxidation of 10 with oxalyl chloride-dimethyl sulfoxide-triethylamine or with dimethyl sulfoxide-1,3-dicyclohexylcarbodiimide-cat. phosphoric acid gave the blocked 2,6anhydro-aldehydo-heptose 11, which was immediately oxidized to the corresponding heptonic acid 12 by using ruthenium(IV) oxide-NaIO₄ in CH₃CN-CCl₄-H₂O (2:2:3).¹⁰

Compound 12 was converted to the L-glucose derivative 13 by oxidative decarboxylation. The oxidative decarboxylation of carboxylic acids via their diacyl peroxides¹¹ occasionally gave poor results with respect to yield and byproducts for the common carboxylic acids, because diacyl peroxides are often stable enough to withstand thermolysis.¹² It has become obvious that the reaction gives fairly good results with α -acylamino carboxylic acids (especially 2-azetidinone-4-carboxylic acids),¹³ and therefore, oxidative decarboxylation of α -oxy carboxylic acids was studied in model experiments (Table I).

 α -Oxy carboxylic acids $15a-f^{14}$ were treated with 1.1 equiv each (for a, b, and d-f) or 2.1 equiv each (for c) of 3-chloroperoxybenzoic acid and DCC at room temperature in CH₂Cl₂ or EtOAc to give 16a,b,c,f, in 51%, 56%, 15%, and 39% yields, respectively. However, 15d and 15e un-

(12) Shiozaki, M.; Ishida, N.; Sato, S. Bull. Chem. Soc. Jpn. 1989, 62, 3950.

(13) Shiozaki, M. Synthesis 1990, 691.

derwent degradation. The most typical example was 15c. The C-5 carboxy function easily rearranged to the acyloxy structure. On the other hand, the C-4 carboxylic acid part yielded only the stable diacyl peroxide, without rearrangement ensuing. Evidently, the α -oxygen of 15c spurred the oxidative decarboxylation. Application of this reaction to 12 gave a 34% yield of 13, which was finally saponified to 14.

The combination of homologation and oxidative decarboxylation may make possible the conversion of other D sugars to L sugars. Parts of this synthetic scheme may be used to link synthetic C-glycosides to known sugar configurations.

Experimental Section

Melting points are uncorrected. ¹H NMR spectra were recorded at 270 MHz with tetramethylsilane as an internal standard. Column chromatography was carried out on a column packed with Merck silica gel 60 (230-400 mesh ASTM), at slightly elevated pressure (1.2 atm) for elution.

[(Methoxymethoxy)methyl]tributylstannane. Anhydrous THF (70 mL) and *i*-Pr₂NH (5.52 mL) were stirred under nitrogen at 0 °C while n-BuLi (1.6 M hexane solution, 21.6 mL, 34.5 mmol) was added in drops. The resulting solution was stirred for an additional 5 min, and n-Bu₃SnH (10.0 g, 9.11 mL, 34.5 mmol) was added via syringe. After 15 min at 0 °C, this n-Bu₃SnLi solution was treated with paraformaldehyde (1.04 g, 34.5 mmol) at room temperature and was stirred for 3 h under nitrogen. To this n-Bu₃SnCH₂OLi solution in THF was added MeOCH₂Cl (3.32 g, 3.14 mL, 1.2 equiv). After 1 h the reaction mixture was poured into petroleum ether (300 mL). The solution was washed successively with ice-cold 0.5 M aqueous HCl (100 mL \times 2), water, and saturated NaHCO₃, then dried over Na₂SO₄, filtered, and concentrated to give an oily mixture, which was chromatographed on a silica gel (100 g) column. Elution with hexane gave n- $Bu_3SnCH_2OCH_2OMe$ (7.3 g) in 58% yield as an oil ($R_f = 0.345$, hexane:EtOAc = 24:1): ¹H NMR (CDCl₃) δ 0.86-0.95 (15 H, m), 1.24-1.37 (6 H, m), 1.45-1.58 (6 H, m), 3.33 (3 H, s, OCH₃), 3.74 $(1.7 \text{ H}, \text{ s}, \text{ and } 0.3 \text{ H}, \text{ d}, J = 16.6 \text{ Hz}, \text{SnCH}_2\text{O}), 4.51 (2 \text{ H}, \text{ s}, \text{ s})$ OCH₂O). Anal. Calcd for C₁₅H₃₄O₂Sn: C, 49.34; H, 9.38. Found: C, 49.57; H, 9.10.

3,4,5,7-Tetra-O-benzyl-1-O-(methoxymethyl)- α,β -Dgluco-2-heptulopyranose (2). To a solution of n-Bu₃SnCH₂OCH₂OMe (7.80 g, 21.3 mmol) in THF (35 mL) was added a solution of n-BuLi (13.3 mL of a 1.6 M hexane solution,

⁽¹⁰⁾ Carlsen, P. H. J.; Katsuki, T.; Martin, V. S.; Sharpless, K. B. J. Org. Chem. 1981, 46, 3936.

^{(11) (}a) Denney, D. B.; Sherman, N. J. Org. Chem. 1965, 30, 3760. (b) Oae, S.; Fujimori, K. The Chemistry of Functional Groups: The Chemistry of Peroxides; Patai, S., Ed.; John Wiley and Sons: New York, 1983; pp 608-632.

⁽¹⁴⁾ Compounds 15a-e were commercially available. Compound 15f was prepared from D-glucuronic acid as follows. To a suspension of D-glucuronic acid (20 g) in THF (800 mL)-H₂O (70 mL) was added diphenyldiazomethane (20 g). The mixture was stirred for 10 h and was concentrated to give a residual oil, which was dissolved in pyridine (300 mL) and Ac₂O (450 mL). After 10 h the reaction mixture was concentrated and was chromatographed on a silica gel column to give diphenylmethyl 1,2,3,4-tetra-O-acetyl- β -D-glucuronate (36 g; mp 146-148 °C). This benzhydryl ester (0.9 g) was hydrogenolyzed in THF (10 mL) by using 10% Pd on carbon (0.4 g) as a catalyst. The reaction mixture was filtered and was diluted with hexane to deposite an oily residue. The hexane solution was decanted to collect the oily residue. This decantation process was repeated two times to remove diphenylmethane from a mixture of acids 15f (0.6 g).

21.3 mmol) at -78 °C under nitrogen with stirring. After 10 min, a solution of 2,3,4,6-tetra-O-benzyl-D-glucono-1,5-lactone (1, 7.62 g, 14.16 mmol) in THF (25 mL) was added at -78 °C. After 30 min, the reaction mixture was diluted with ether. The solution was washed with water and brine, then dried over MgSO₄, and concentrated to an oily mixture, which was chromatographed on a silica gel column. Elution with cyclohexane-EtOAc, 3:1 and then 1:1, gave 6.14 g (71%) of an anomeric mixture of 2 as an oil: IR ν_{max} (neat) 3430, 1730 (w, partly keto form?), 1700 (w, keto form?); ¹H NMR (CDCl₃) δ 3.22-3.78 (9 H, m, containing 2 s at δ 3.35 and 3.36, 1.5 H each), 3.97-4.10 (2 H, m), 4.47-4.94 (10 H, m, containing 2 H singlet at δ 4.90, OCH₂OMe), 7.11-7.22 (2 H, m), 7.25-7.44 (18 H, m); MS m/z 596 (M - 18), 581, 551. Anal. Calcd for C₃₇H₄₂O₃·H₂O: C, 70.23; H, 7.01. Found: C, 70.39; H, 6.92.

Methyl 3,4,5,7-Tetra-O-benzyl- α -D-gluco-2-heptulopyranoside (3). A solution of the mixture 2, (120 mg) in MeOH (4 mL) and concentrated HCl (50 mg) was refluxed for 2 h and was concentrated to give a crude solid, which was purified on a silica gel column to give 3 (94 mg, 82%) as a crystalline solid (2 and 3 have the same R_f value): mp 127.5-128 °C (from cyclohexane-EtOAc); IR ν_{max} (Nujol) 3525 cm⁻¹; ¹H NMR (CDCl₃) δ 3.31 (3 H, s), 3.59-3.74 (7 H, m, H-1,1',3,5,6,7,7'), 4.10 (1 H, dd, J = 8.8, 9.8 Hz, H-4), 4.49-4.61 (3 H, m), 4.72-4.94 (5 H, m), 7.14-7.19 (2 H, m), 7.25-7.36 (18 H, m); MS m/z 553 (M⁺ - 31). Anal. Calcd for C₃₆H₄₀O₇: C, 73.95; H, 6.90. Found: C, 74.10; H, 7.16.

3,4,5,7-Tetra-O-benzyl- α -D-**gluco-2-heptulopyranose** (4). A solution of 2 (6.13 g) or 3 in THF (80 mL) and 6 M HCl (140 mL) was heated to 60 °C for 1.5 h and was concentrated to remove THF. A crystalline solid (4 as its monohydrate, 5.13 g, 87%) precipitated from the remaining aqueous solution: mp 118–119 °C (from H₂O); IR ν_{max} (Nujol) 3500, 3380, 3210 cm⁻¹; ¹H NMR (CDCl₃) δ 2.28 (1 H, dd, J = 6.8, 7.1 Hz, OH-1), 3.27 (1 H, d, J = 0.7 Hz, OH-2), 3.44 (1 H, dd, J = 6.8, 11.5 Hz, H-1), 3.51 (1 H, dd, J = 7.1, 11.5 Hz, H-1'), 3.51 (1 H, dd, J = 0.7, 94, 10.0 Hz, H-5), 3.65 (1 H, dd, J = 1.8, 10.8 Hz, H-7), 3.73 (1 H, dd, J = 4.2, 10.8 Hz, H-7'), 4.01 (1 H, ddd, J = 1.8, 4.2, 10.0 Hz, H-6), 4.05 (1 H, dd, J = 9.4, 9.4 Hz, H-4), 4.48-4.92 (8 H, m), 7.15-7.20 (1 H, m), 7.25-7.37 (19 H, m). Anal. Calcd for C₃₅H₃₈O₇·H₂O: C, 71.41; H, 6.85. Found: C, 71.52; H, 6.86.

3,4,5,7-Tetra-O-benzyl-1-O-(trimethylacetyl)- α -D-gluco-2-heptulopyranose (5). A solution of 4-H₂O (5.09 g) in pyridine (100 mL) and Me₃CCOCl (4.0 g) was heated to 60 °C for 1 h and was concentrated in vacuo to remove pyridine. The residual oil was dissolved in EtOAc, which was washed with dilute HCl, water, aqueous NaHCO₃, and brine, then dried over MgSO₄, and concentrated to give a crude oil. The oil was chromatographed on a silica gel column. Elution with cyclohexane-EtOAc (2:1) gave 5.21 g (92%) of 5 as an oil: IR ν_{max} (neat) 3440, 1730 cm⁻¹; ¹H NMR (CDCl₃) δ 1.18 (9 H, s), 3.17 (1 H, s, OH), 3.54-3.80 (5 H, m, H-3,5,6,7,7'), 4.01, 4.20 (2 H, AB q, J = 11.2 Hz, H-1,1'), 4.06 (1 H, m, H-4), 4.48-4.66 (4 H, m), 4.83-4.95 (4 H, m), 7.2-7.4 (20 H, m); MS m/z 654 (M⁺), 636 (M⁺ - 18), 563, 545. Anal. Calcd for C₄₀H₄₆O₈:H₂O: C, 71.41; H, 7.19. Found: C, 71.35; H, 7.15.

2,6-Anhydro-3,4,5,7-tetra-O-benzyl-1-O-(trimethylacetyl)-D-glycero-D-gulo-heptitol (6). A solution of 5 (5.70 g) in MeCN (150 mL), Et₃SiH (16 mL), and BF₃·OEt₂ (6.5 mL) was stirred for 3 h at room temperature, and the reaction mixture was concentrated in vacuo, was diluted with EtOAc, which was washed with water, aqueous NaHCO₃, and brine, and dried over MgSO₄, and was concentrated to give a crude oil, which was chromatographed on a silica gel column. Elution with cyclohexane-EtOAc (4:1) gave 3.68 g (66%) of 6 as an oil that crystallized gradually on standing: mp 47-49 °C (hexane); IR ν_{max} (neat) 1727 cm⁻¹; ¹H NMR (CDCl₃) δ 1.20 (9 H, s), 3.44-3.77 (7 H, m), 4.22 (1 H, dd, J = 4.1, 12.0 Hz, H-1), 4.46 (1 H, dd, J = 1.7, 12.0 Hz, H-1'), 4.52-4.65 (5 H, m), 4.82-4.91 (4 H, m), 7.18-7.36 (20 H, m); MS m/z 638 (M⁺), 637, 547. Anal. Calcd for C₄₀H₄₆O₇: C, 75.21; H, 7.26. Found: C, 75.46; H, 7.31.

2,6-Anhydro-1-O-(trimethylacetyl)-D-glycero-D-guloheptitol (7). A solution of 6 (1.0 g) in AcOH (50 mL) was hydrogenated for 24 h at room temperature by using 10% Pd/C (1 g), and the reaction mixture was concentrated in vacuo to give 436 mg (quantitatively) of 7 as a powder, which was employed for the next reaction without purification.

2,6-Anhydro-1-O-(trimethylacetyl)-7-O-(triphenylmethyl)-D-glycero-D-gulo-heptitol (8). A solution of 7 (436 mg) and Ph₃CCl (524 mg) in pyridine (12 mL) was stirred for 15 h at room temperature, and the reaction mixture was concentrated in vacuo, diluted with EtOAc, washed with brine, dried over MgSO₄, and concentrated to give a crude oil, which was chromatographed on a silica gel column. Elution with cyclohexane-EtOAc (1:2) gave 643 mg of 8 (79% yield from 6) as an oil: IR $\nu_{\rm max}$ (CHCl₃) 3600–3400, 1720, 1597 cm⁻¹; ¹H NMR (CDCl₃) δ 1.21 (9 H, s), 2.60 (1 H, br, OH), 2.83 (1 H, br OH), 3.11 (1 H, br, OH), 3.27-3.46 (5 H, m), 3.50-3.65 (2 H, m), 4.28 (1 H, dd, J = 2.0, 12.2 Hz, H-1), 4.54 (1 H, dd, J = 3.4, 12.2 Hz, H-1'), 7.20–7.33 (10 H, m), 7.42–7.48 (5 H, m); $[\alpha]^{24}_{D}$ –14.1° (c 1.5, CHCl₃); MS m/z 520 (M⁺), 443; high-resolution mass spectrum calcd for $C_{31}H_{36}O_7 m/z$ 520.24605, found 520.24445. Anal. Calcd for C₃₁H₃₆O₇: C, 71.52; H, 6.97. Found: C, 71.41; H, 6.80.

2,6-Anhydro-3,4,5-tri-O-benzyl-1-O-(trimethylacetyl)-7-O-(triphenylmethyl)-D-glycero-D-gulo-heptitol (9). To a solution of 8 (233 mg) and PhCH₂Br (465 mg) in THF (10 mL) were added n-Bu₄NI (40 mg) and NaH (120 mg of a 55% oil dispersion). The mixture was stirred for 15 h at room temperature, diluted with EtOAc, washed with dilute HCl, aqueous NaHCO₃, and brine, dried over MgSO4, and concentrated to give a crude oil, which was chromatographed on a silica gel column. Elution with cyclohexane-EtOAc (9:1) gave 290 mg of 9 (82% yield) as an oil: IR ν_{max} (neat) 1730, 1598 cm⁻¹; ¹H NMR (CDCl₈) δ 1.20 (9 H, s), 3.19 (1 H, dd, J = 2.9, 10.3 Hz, H-7), 3.41 (1 H, dt, J = 2.9, 10.3 Hz, H-7)1.0, 10.3 Hz, H-7'), 3.51-3.77 (4 H, m), 3.94 (1 H, t, J = 9.3 Hz, H-4), 4.27 (1 H, dd, J = 3.4, 11.5 Hz, H-1), 4.39 (1 H, d, J = 11.5 Hz, H-1'), 4.67-5.00 (6 H, m), 6.84-6.88 (2 H, m), 7.16-7.38 (20 H, m), 7.44–7.54 (8 H, m); MS m/z 699 (M⁺ – Bn), 593, 547 (M⁺ Tr). Anal. Calcd for C₅₂H₅₄O₇: C, 78.96; H, 6.88. Found: C, 78.66; H, 7.01.

2,6-An hydro-3,4,5-tri-O-benzyl-1-O-(trimethylacetyl)-Dglycero-D-gulo-heptitol (10). (a) A suspension of 9 (570 mg) in MeOH (30 mL) containing 4% H₂SO₄ was stirred for 30 min at room temperature. The reaction mixture became a solution, which was diluted with EtOAc, washed with aqueous NaHCO₃ and brine, dried over MgSO₄, and concentrated to give a crude oil, which was chromatographed on a silica gel column. Elution with cyclohexane-EtOAc (4:1) gave 282 mg of 10 (71% yield) as a crystalline solid: mp 90-91 °C (EtOAc-hexane); IR ν_{max} (neat) 3500, 1728 cm⁻¹; ¹H NMR (CDCl₃) δ 1.22 (9 H, s), 3.33-3.40 (1 H, m, H-6), 3.47-3.58 (3 H, m), 3.65 (1 H, dd, J = 4.4, 11.7 Hz, H-7), 3.71-3.78 (1 H, m), 3.84 (1 H, dd, J = 2.4, 11.7 Hz, H-7'), 4.19 (1 H, dd, J = 4.4, 11.7 Hz, H-1), 4.44 (1 H, dd, J = 1.5, 11.7 Hz, H-1'), 4.60, 4.67 (2 H, AB q, J = 10.7 Hz), 4.74-4.93 (4 H, m), 7.25-7.38 (15 H, m); MS m/z 547 (M⁺ - 1), 541, 457, 351. Anal. Calcd for C₃₃H₄₀O₇: C, 72.24; H, 7.35. Found: C, 71.88; H, 7.19.

(b) To a solution of 6 (64 mg) in CH_2Cl_2 (2 mL) was added Ph_3C ·BF₄ (83 mg) under nitrogen at room temperature with stirring. After 10 h the reaction mixture was diluted with EtOAc, washed with aqueous NaHCO₃, dried over MgSO₄, and concentrated to give a crude oily mixture. This was chromatographed on a silica gel plate. Development with cyclohexane-EtOAc (4:1) gave 13 mg of 10 ($R_f = 0.279$).

2,6-Anhydro-3,4,5-tri-O-benzyl-7-O-(trimethylacetyl)aldehydo-L-glycero-L-gulo-heptose (11). (a) To a solution of 10 (121 mg) in DMSO (3 mL) were added DCC (182 mg) and H₃PO₄ (15 mg). The solution was stirred for 6 h at room temperature. The reaction mixture was diluted with EtOAc, washed with aqueous NaHCO₃ and brine, dried over MgSO₄, and concentrated to give a crude oil, which was chromatographed on a silica gel column. Elution with cyclohexane-EtOAc (3:1) gave 92 mg of 11 (76% yield) as an oil, which was employed for the next reaction without further purification.

(b) To a solution of $(COCl)_2$ (0.025 mL) in CH_2Cl_2 (1 mL) was added DMSO (0.045 mL) at -78 °C. After 5 min a solution of 10 (45 mg) in CH_2Cl_2 (1 mL) was added. The mixture was stirred for 15 min at -78 °C, and Et_3N (0.2 mL) was added. After 5 min the reaction mixture was allowed to warm to room temperature. Then water (2 mL) was added, and the whole was extracted with CH_2Cl_2 , washed with brine, dried over MgSO₄, and concentrated. Column chromatography on silica gel gave 38 mg of 11 (86% yield), which was employed for the next reaction without further purification: IR ν_{max} (neat) 1730 cm⁻¹; ¹H NMR (CDCl₃) δ 9.59 (1 H, d, J = 0.5 Hz, CHO); MS m/z 546 (M⁺); high-resolution mass spectrum calcd for C₃₃H₃₈O₇ m/z 546.26174, found 546.26314. Anal. Calcd for C₃₃H₃₈O₇H₂O: C, 70.19; H, 7.19. Found: C, 70.37; H, 7.53.

2,6-Anhydro-3,4,5-tri-O-benzyl-7-O-(trimethylacetyl)-Lglycero-L-gulo-heptonic Acid (12). To a solution of 11 (92 mg) in MeCN-CCl₄-H₂O (2:2:3, 7 mL) were added NaIO₄ (144 mg) and RuO₂·xH₂O (3 mg). The mixture was stirred for 2 h at room temperature, diluted with EtOAc, washed with water and brine, dried over MgSO₄, and concentrated to give a crude oil, which was chromatographed on a silica gel column. Elution with cyclohexane-EtOAc (1:1) and then with EtOAc containing 1% AcOH gave 38 mg (40%) of 12 as an oil: IR ν_{max} (neat) 3600-2500, 1727 cm⁻¹; ¹H NMR (CDCl₃ + D₂O) δ 1.17-1.21 (9 H, m), 3.53-3.82 (3 H, m, H-4,5,6), 4.00 (1 H, m, H-3), 4.21 (1 H, dd, J = 4.9, 12.2 Hz, H-7), 4.45 (1 H, dd, J = 2.0, 12.2 Hz, H-7'), 4.47 (1 H, d, J = 10.2 Hz, H-2), 4.67-4.91 (6 H, m, 3 × CH₂Ph), 7.24-7.34 (15 H, m); MS m/z 561 (M⁺ - 1), 471 (M⁺ - Bn), 365, 359. Anal. Calcd for C₃₃H₃₈O₈: C, 70.44; H, 6.81. Found: C, 70.31; H, 6.71.

2,3,4-Tri-O-benzyl-1-O-(3-chlorobenzoyl)-6-O-(trimethylacetyl)- β -L-glucopyranose (13). To a solution of 12 (24 mg) in CH₂Cl₂ (1 mL) were added 3-chloroperoxybenzoic acid (10.4 mg, 85% purity) and DCC (13 mg) at 0-5 °C with stirring. After 10 min the mixture was warmed to room temperature, stirred for 1 h, and filtered. The filtrate was chromatographed on a silica gel plate. Development with cyclohexane-EtOAc (9:1) gave 10 mg (34%) of 13 (R_f = 0.333) as an oil: $[\alpha]^{25}_{D}$ +32° (c 0.9, CHCl₃); IR ν_{max} (neat) 1733 cm⁻¹; ¹H NMR (CDCl₃) δ 1.18 (9 H, s), 360-3.86 (4 H, m, H-2,3,4,5), 4.25 (1 H, dd, J = 4.9, 12.2 Hz, H-6), 4.36 (1 H, dd, J = 2.0, 12.2 Hz, H-6'), 4.57-4.95 (6 H, m), 5.87 (1 H, d, J = 7.8 Hz, H-1), 7.21-7.36 (15 H, m), 7.38 (1 H, t, J = 7.8 Hz), 7.56 (1 H, dq, J = 7.8, 1.0 Hz), 7.90 (1 H, dt, J = 7.8, 1.0-1.5 Hz), 7.97 (1 H, t, J = 2.0 Hz); MS m/z 581 (M⁺ - Bn). Anal. Calcd for C₃₉H₄₁O₈Cl: C, 69.58; H, 6.14; Cl, 5.27. Found: C, 69.33; H, 6.15; Cl, 5.13.

2,3,4-Tri-O-benzyl-6-O-(trimethylacetyl)- α , β -L-glucopyranose (14). A solution of 13 (7 mg) in THF (0.5 mL) and 0.1 M NaOH (0.25 mL) was stirred for 4 h at room temperature. The reaction mixture was diluted with EtOAc, washed with brine, dried (MgSO₄), and concentrated to give an oily residue, which was chromatographed on a silica gel column. Elution with cyclohexane-EtOAc (3:1) gave 3 mg (54%) of 14 as powder: $[\alpha]^{25}_{D}$ -26.4° (c 0.32, CHCl₃); IR ν_{max} (neat) 3440, 1727 cm⁻¹; ¹H NMR (CDCl₃) δ 1.20-1.22 (9 H, m), 3.36-4.52 (6 H, m), 4.56-4.96 (6 H, m), 5.19-5.27 (1 H, m, H-1); MS m/z 517 (M⁺ – OH), 443, 425, 337, 319, 282, 253; high-resolution mass spectrum of (M⁺ – OH) calcd for C₃₂H₃₇O₆ m/z 517.25895, found 517.25885. Anal. Calcd for C₃₂H₃₈O₇: C, 71.89; H, 7.16. Found: C, 71.60; H, 7.00.

Acylal Analogues 16a,b,c,f. General Procedure. To a solution of the substrates 15a-f (1.0 mmol) in a solvent (2-10 mL) cooled in an ice bath were added 3-chloroperoxybenzoic acid (1.1 mmol except for 15c; 2.1 mmol for 15c) and then 1,3-dicyclohexylcarbodiimide (1.1 mmol except for 15c; 2.1 mmol for 15c) with stirring. After evolution of CO_2 ceased at 0 °C or room temperature, the reaction mixture was filtered and chromatographed on a silica gel column or a silica gel TLC plate.

Physical data are as follows. 16a: $[\alpha]^{25}_{D}$ -6.8° (c 2.0, CHCl₃); IR ν_{max} (neat) 1762, 1740 cm⁻¹; ¹H NMR (CDCl₃) δ 2.16 (3 H, s), 7.2-7.8 (7 H, m), 7.8-8.1 [3 H, m, containing 1 H singlet at δ 7.92, PhCH(OAc)(OAr)]; MS m/z 304 (M⁺); high-resolution mass spectrum calcd for C₁₆H₁₃O₄Cl m/z 304.05028, found 304.05088. Anal. Calcd for C₁₆H₁₃O₄cl: C, 63.06; H, 4.30; Cl, 11.63. Found: C, 63.00; H, 4.40; Cl, 11.80.

16b: IR (neat) 1725 (neat) cm⁻¹; ¹H NMR (CDCl₃) δ 3.53 (3 H, s), 5.45 (2 H, s), 7.2–8.1 (4 H, m); MS m/z 200 (M⁺, ³⁵Cl); high-resolution mass spectrum calcd for C₉H₉O₃Cl m/z 200.02395, found 200.02315. Anal. Calcd for C₉H₉O₃Cl: C, 53.88; H, 4.52; Cl, 17.67. Found: C, 54.02; H, 4.37; Cl, 17.67.

16c: IR ν_{max} (neat) 1810, 1770, 1740 cm⁻¹; ¹H NMR (CDCl₃) δ 2.94 (1 H, dd, J = 9.2, 18.0 Hz), 3.42 (1 H, dd, J = 10.6, 18.0 Hz), 4.02 (1 H, ddd, J = 5.9, 9.2, 10.6 Hz), 7.13 (1 H, d, J = 5.9 Hz), 7.4–8.1 (8 H, m); MS m/z 395 (M⁺ – CO₂), 394 (M⁺ – CO₂). Anal. Calcd for C₁₉H₁₂O₈Cl₂: C, 51.96; H, 2.75; Cl, 16.14. Found: C, 52.45; H, 3.05; Cl, 16.14.

16f: IR ν_{max} (neat) 1750, 1575 cm⁻¹; MS m/z 413 (M⁺ – 59), 317 (M⁺ – 155). Anal. Calcd for C₂₀H₂₁O₁₁Cl: C, 50.80; H, 4.48; Cl, 7.50. Found: C, 50.23; H, 4.54; Cl, 7.48.

Partially OH Depleted Calix[4]arenes

Flavio Grynszpan, Zafrir Goren, and Silvio E. Biali*

Department of Organic Chemistry and Fritz Haber Research Center of Molecular Dynamics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

Received August 7, 1990

The partially OH depleted dihydroxy- and trihydroxycalix[4]arenes 2 and 3 were synthesized in order to assess the relative importance of the cyclic hydrogen bond on the conformation of *p*-tert-butylcalix[4]arene. Both compounds were prepared from the same diethyl diphosphate ester precursor under different reductive cleavage conditions. The ring inversion barriers of 2 and 3 are <10 and 11.6 kcal mol⁻¹, respectively. The completely OH depleted calixarene 5 and the MeOH solvate of dihydroxycalixarene 2 exist in the crystal in a 1,2-alternate conformation. Trihydroxycalixarene 3 crystallizes as a 1:2 pyridine solvate in which 3 adopts a cone conformation. One pyridine molecule is hydrogen bonded to one OH group of 3, while simultaneously being included into the cavity of another molecule of 3. It is concluded that three phenolic units are sufficient to stabilize the cone conformation.

Introduction

Two systems that have been extensively studied in the last years as host compounds for enzyme mimics are cyclodextrins¹ and calixarenes.² Both systems are capable of including small organic molecules into their cavities. However, the cyclodextrins are conformationally rigid whereas the free hydroxyl-containing calixarenes are conformationally flexible on the laboratory timescale. The conformational behavior of calix[4]arenes is normally discussed in terms of four ideal conformations: cone, partial cone, and 1,3- and 1,2-alternate (Figure 1).^{3,4} For

For a monograph on cyclodextrins, see: Bender, M. L.; Komiyama, M. Cyclodextrin Chemistry; Springer-Verlag: Berlin, 1978.

⁽²⁾ For a comprehensive review on calizarenes, see: Gutsche, C. D. Calizarenes; Royal Society of Chemistry: Cambridge, 1989.

⁽³⁾ Cornforth, J. W.; D'Arcy Hart, P.; Nicholls, G. A.; Rees, R. J. W.; Stock, J. A. Br. J. Pharmacol. 1955, 10, 73.

⁽⁴⁾ These conformations are by no means exclusive. For example a "boat" conformation has been recently observed for a sterically crowded calixarene. See: Dahan, E.; Biali, S. E. J. Org. Chem. 1989, 54, 6003.